WMATA L’Enfant Plaza Fire

Today there was a fire in a WMATA subway tunnel near L’Enfant. The National Transportation Safety Board (NTSB) is now investigating, and I have confidence that they will do a thorough investigation. I have some questions about actions taken right after the smoke was reported that no one, or at least no one in the media I have seen, has asked. The station filled with smoke, and they evacuated it. WMATA stopped running green and yellow trains through L’Enfant. However they kept running blue, orange, and silver trains through, but these trains did not stop at the station, as they normally would. For those not familiar with L’Enfant Plaza Metro Station, orange, blue, and silver lines share the same track on the lower level, and yellow and green share the same track on the upper level. My question is, were they sure it was safe to keep sending the orange, blue, and silver trains through? I am not asking from the standpoint of the fire, because presumably, they traced the location of the smoke enough to know it was not in the lower tunnel. By safe, I mean because of the potential inhalation of smoke in the lower level tunnels. If the station filled with enough smoke that it needed to be evacuated, then how were they sure that smoke would not enter the trains running through it?

A couple of quick points:

  • Just because air smells bad doesn’t necessarily mean it is toxic or hazardous, but conversely, just because air smells fine doesn’t mean it is safe.
  • Particulate matter in air and/or smoke is in general not something you really want to breath, but there are different levels of toxicity associated with it. That is, some particulate matter is not more than just an irritant. However, the effect particulate matter has on a person is also affected by that person’s health. People with respiratory issues are more susceptible to any effects.
  • Exposure to hazardous or toxic materials can cause effects on different time scales. People who were trapped on the WMATA train in the tunnel, would have acute (short-term) effects from breathing the smoke, such as coughing and having trouble breathing. However, they were probably also exposed to chemicals whose effect is not immediate, such as carcinogens.

The questions I have, that I have not heard anyone ask include:

  • What is the air exchange rate between the subway trains and the surrounding air? Can the ventilation be turned off manually, so that there was no air exchange between the train and the surrounding air while the trains were near L’Enfant?
  • Were there any measurements taken of the air in L’Enfant, particularly on the lower level where the orange, blue, and silver trains were still running through? If so, what were the measurements of? Just measuring particulate matter will not indicate almost nothing about organic compounds or other chemicals in the air.
  • How far did the smoke spread?
  • Assuming air measurements were taken, did anyone calculate the amount of contaminants that people in the trains would be exposed to while running through the station based on time and air exchange rate?

My educated guess is that no air measurements were taken. There are probably some sensors in place to measure smoke, but depending on how that measurement is taken, it will tell you information about the particulate matter and that is it. I seriously doubt there was initially any sensors that measured organic compounds or any other type of compounds in the air. I have my doubts that any portable system was put in place during the response. The priority would have been evacuating people (as it should have been). It is possible that WMATA had some qualitative data that there was not much smoke on the lower level. That is, someone may have looked at a video screen and decided the air didn’t look bad. However, unless they had actual quantitative data of what was in the air, then visual assessment of air is a really bad way to make assessments on the quality of the air.

The early statements by WMATA and all other sources, like the fire departments involved, was that they did not know the source of the fire, location or cause. Thus they could not have possibly known what was burning and what would be in the air. For example, if wood is burning, you can expect certain chemicals in the air. If rubber is burning, you can expect different chemicals in the air. WMATA probably decided that the air on the lower level didn’t look that bad, and the trains would go through the station quickly enough that very little exposure would occur. They very well may be right, but with no data and no statements about any calculations, they have no way to prove that. Also, did they inform their passengers of this? If I was on a train, and I knew that the train was going to go through, but not stop, at a station that was filling with smoke, I would get off the train. I don’t feel the need to expose myself unnecessarily to hazardous substances, even if in small amounts. I do not like standing near people who are smoking. The second hand smoke may only minimally increase my risk of disease, but I still don’t see the need for that tiny increase. Thus, was WMATA considering passengers’ exposures at all? Furthermore, did they communicate the possibility of exposure to their passengers on the orange/blue/silver lines to allow their passengers to make their own educated decision about staying on the train? My guess is the answer to both those questions is no, and that is another thing to which WMATA should be made to respond.

HAZWOPER Training

Last week I attended 40 hour HAZWOPER training. HAZWOPER, an acronym for Hazardous Waste Operations and Emergency Response Standard, is OSHA mandated training for employees who may potentially be exposed to hazardous substances and who are engaged in cleanup operations or other certain other activities involving hazardous waste. Normally I work in an office, and the closest I come to hazardous materials or waste is sitting at a computer and analyzing data from hazardous waste sites. However, there is a possibility that I may sometimes be asked to go to a site where HAZWOPER training would be necessary, and I had an opportunity to take the training, so I did.

HAZWOPER training includes topics such as basic chemistry, toxicology, biology, radiation, environmental science, analytical sampling, and law and regulations. Truthfully, I could have taught a good portion of the training. It also includes hands on training with some of the sampling methods and instruments that are used in the field. Personally, I think playing with instruments and sampling materials is fun. As part of the training, you are required to get dressed in various personal protective equipment (PPE) that would be required under various circumstances at sites. In general, you look rather ridiculous in the PPE, but of course PPE is not supposed to be fashionable or make you look good, it is supposed to protect you from hazardous materials that could kill you or cause injury or illness. What PPE does not do, is keep you cool. It was in the 90’s °F when we were dressing in the PPE. While the suits protect you from most hazards, ironically they can cause potential health hazards if you over heat. There are different levels of PPE that are used depending on what the potential hazards are. The most protective is Level A, which is a fully encapsulating chemical-protective suit with positive pressure, full face-piece self-contained breathing apparatus (SCBA), inner and out gloves, and boots.

Me in Level A PPE

Me in Level A PPE

The next level, Level B PPE, is slightly less protective and includes chemical-resistant coveralls instead of the fully encapsulating suit, as well as SCBA, inner and outer gloves, and boots.

Me in Level B PPE

Me in Level B PPE

The next level, Level C PPE, is less protective still. It includes an air purifying respirator instead of SCBA, but other than that is fairly similar to Level B.

Me in Level C PPE

Me in Level C PPE

There is one final level, which is Level D PPE, which is minimal protection from physical hazards but does not include respiratory protection. This may sound strange, but if it is hot, Level A is actually easier to wear than B or C. The fully encapsulating suit is roomier, and the compressed air is continually blowing through your mask and then through the suit itself before it exits an exhaust vent. This air flow helps to cool you. In the chemical resistant suit for Level B and C, I just felt like a turkey that had been baked in a cooking bag. Side note, the SCBA tanks we used were made of a composite material and weighed  about a third of the weight of the metal SCUBA tanks I have worn before. Also, for as cumbersome as it was to get dressed out in all the PPE, I think it was easier to dress in and walk around in the PPE compared to the SCUBA drysuit I was wearing a month beforehand while SCUBA diving Silfra. Obviously once underwater, the tank weight is negligible, and the drysuit becomes less cumbersome, but above water, they are really difficult to get into and move.

For HAZWOPER training, you don’t just have to get dressed in the different levels, you need to get used to actually moving and doing various tasks in them. Hence, when we first wore them, our tasks were to play with balls, as one would normally do at a hazardous waste site.

Playing ball in Level A PPE

Playing ball in Level A PPE

Playing ball in Level C PPE

Playing ball in Level C PPE

Note in the above photo, the person in the center is wearing proper head protection in the form of a straw cowboy hat. No, he actually just being fashionable. Wearing hazardous material PPE is no reason to not be fashionable.

We also did a few exercises to practice tasks at a hazardous materials site, including decontamination. There are set steps and tasks to make sure decontamination is done properly. The first pair of people wash the worker, the second pair wash the worker again, the third set inspect the cleaning, and the fourth set help the worker out of the PPE. Notice the use of walkers for the worker to hold onto while the decontamination team washes the boots. There is no dignity in any of this.

Decontamination practice

Decontamination practice

We also practiced emergency decontamination of an incapacitated worker. We actually did not finish this task. This was due to the fact that after they started decontaminating him, someone loudly said, maybe we will have to do mouth to mouth. At that point, the incapacitated worker suddenly regained conscienness and took off running.

Emergency decontamination of an incapacitated worker

Emergency decontamination of an incapacitated worker

Since this was practice and not a real situation, we did a few things you can’t do on a real site. For example, the decontamination team stayed inside when not needed outside and did various things to stay cool. One thing that we did was lay on the concrete floor because the concrete was cooler than the air, and it absorbed some of your body heat. Sure, we looked like casualties at a hazardous waste site, but it worked and helped keep us cooler.

Cooling off by laying on the concrete floor

Cooling off by laying on the concrete floor

We also took “hits” of the compressed air from the SCBA. The full face masks we wore were interchangeable for either air purifying filters or for the hose from SCBA. In between tasks, we didn’t wear either. However, we would attach the SCBA for short periods of time because the compressed air blowing into your mask helps to cool you.

Cooling off by attaching the SCBA to the mask

Cooling off by attaching the SCBA to the mask

Another thing that should never be done at a real site was drinking water through the mask via a straw. Actually it might be acceptable to do this, assuming someone with clean hands put the straw in the bottle and then into your mask. It is not acceptable if you are doing this with your gloves.

Drinking water through the mask

Drinking water through the mask

For as hot as I was while in some of the PPE, I still had fun. I was out of the office, and that in itself was fun. Also, I learned a bit, and that is always fun.

Smoke Detector Stupidness

Last night at 3 a.m. my smoke detectors went off. There really is nothing like being awakened from a dead sleep to that extremely high pitched chirp and a female voice saying “fire, fire.” I, of course, immediately got out of bed and went in search of this supposed fire. There was none to be found. However my smoke detectors assured me there was. I then had to go through the house and pull all five of them from their wiring and in some cases pull out the batteries because pushing the button would not hush them. At 3 a.m., that was so much fun.

When I bought this house it did not have any smoke detectors. It had two wall mounted holders for smoke detectors, one in each the downstairs and upstairs hall. There were none in the bedrooms, and there was no wiring for interconnected ones. I decided early on that as I renovated the house, I would install interconnected wired smoke detectors and bring the house up to current code, even though it was not required. I’m an engineer that way. During Phase 2 of renovations, because the ceiling downstairs had to be opened to install a structural beam, the house lost grandfather status, and interconnected wired smoke detectors now became required by the County. No problem. I was already planning to do it. When it came time to install them, I decided to get combination smoke and carbon monoxide detectors. I had to buy all new ones anyway, so I might as well go for full protection.

This leads me to last night and my need to rant. My detectors are Kiddie brand. I mention the brand because there is an oligopoly of sorts on household fire alert and response equipment. All of them seem to work the same and have the same flaws. Modern houses generally will have interconnected smoke detectors so that if one detects smoke, all the detectors will go into alarm. There should also be one detector in each bedroom and in each hall. Interconnected fire detectors and their location are not universally adopted building code requirements for new construction but are a good idea. If you have a large house, it is possible for one to go in alarm and not awaken a sleeping person in another part of the house. Research has also shown that children do not necessarily wake to a smoke detector at all, in particular the tone. This is partially the reason why voice alarms have been added, but with children, personalized voice alarms with the parent’s voice may be needed to insure children are awakened.

If my detectors detect fire, they set off one set of chirps and say “fire, fire.” If they detect carbon monoxide, they set off another set of chirps and say “carbon monoxide.” If the battery is low, another chirp and “low battery.” Then there is some complicated series of chirp sequences to denote if it was previously in alarm, has malfunctioned, needs replacement, etc. that NO ONE COULD POSSIBLY DISTINGUISH THE MEANING OF AT 3 A.M. Mine were definitely yelling fire last night. As I ran around with a stool trying to figure out what the problem was, the hush button was not working at all. At one point, one of them said carbon monoxide, but I have no idea which one because they are all blaring at me at 3 a.m. The units also have some complicated series of LED blinks to denote in which mode (or possibly mood) it is. This is great, but they are IMPOSSIBLE TO UNDERSTAND AT 3 A.M. Also, as far as I could tell or at least understand, there was no way to figure out which specific detector set off the alarm and thus which one was malfunctioning. Maybe the LED is supposed to tell me this, but I couldn’t figure it out when all I wanted to do is stop the awful noise being blared at me.

Thus if any person who happens to work in smoke detector design happens to read this, these things are too complicated to understand when there is some malfunction or inaccurate alarm. I appreciate the voice that says fire, carbon monoxide, or low battery tells you what the supposed problem is. That makes it much easier to understand than which series of chirps are being blared. However, if you are trying to track down a malfunction, it is impossible. Stopping the blare seems to be impossible short of removing all sources of power. For interconnected detectors, I want and need to known which one started the alarm. I can’t figure out the problem if I don’t know that, ESPECIALLY WHEN IT IS 3 A.M. WHICH IS EVIDENTLY THE ONLY TIME DETECTORS HAVE A FLASE ALARM OR LOW BATTERY.

That ends my rant. While I’m on the subject of fire detectors though, please remember to change the battery every six months. Also, please remember when the detector itself needs to be replaced, never throw it in the trash. Smoke detectors contain a small amount of a radioactive substance. They are perfectly fine to have in your house, but they should not be disposed of in a landfill. Find an appropriate place to dispose of them. [Update: Please see my post Household Hazardous Waste Disposal on how I eventually disposed of my malfunctioning smoke detector.]

Empathy for Technophobes

I was in a discussion recently about bovine spongiform encephalopathy (BSE) otherwise known as mad cow disease. The important background of it and why I am mentioning it, is that dairy cows need protein supplements because of how much milk they produce. In North America, the protein supplements were mainly in the form of soy, but in the United Kingdom, the supplements came mainly from rendered animal parts. These animal parts included other cows. I can remember when BSE first became a huge news item, and the practice of feeding cattle rendered animal parts came to light, I was disgusted like I imagine many people were. Part of my disgust was my questioning why would you take a herbivore, and not only turn it into a carnivore, but also a cannibal? Leaving aside the point that BSE showed that this practice had serious risks, there is a more basic question I have to ask myself, which is protein is protein, so does it matter where it came from? In this case, of course, the answer is yes. On a molecular level, amino acids like lysine and tryptophan, are the same no matter where they come from. However, the proteins and other compounds in soy differ quite a bit from the proteins and other compounds in rendered animal parts. Also, in the case of BSE, it is the shape of the proteins in animal parts that was really important. Thus in this case, it really does matter where the protein is coming from.

The turning a cow into a cannibal is still a bit of a different issue. The idea in general just seems wrong and repulsive to me. It is not natural. I think that reaction I have is somewhat common, and it has implications for how people react to certain technology. Humans are naturally repulsed and scared of certain things, and this has for the most part served us well through history. Humans in general, are repulsed by human excrement. We all urinate and defecate, but once we do, we all want the urine and feces to go away, never to be seen again. This is not a bad reaction in that, feces can have multitudes of infectious agents in it, so having it go away is a good thing. I am speaking personally to a only certain extent though. I have worked in wastewater treatment design, I have sampled at a wastewater treatment plant, and I spent several years collecting and analyzing other people’s urine for my dissertation research. I am kind of fascinated by human excrement and the information it can provide about the health of an individual. That being said, I would never touch it with my bare hands.

Humans’ natural repulsion to their own excrement causes an interesting reaction to its treatment. In urban and suburban areas, wastewater is collected, treated, and then normally discharged to some body of water such as a river, lake, or the sea. What many people don’t seem to realize, is that if the wastewater is discharged to a river or lake, then there is a very good chance, it will flow some distance and then be collected and pumped to a water treatment plant where it will then be treated and become the water supply for some other municipality. Due to the scarcity of water in many areas, some municipalities are starting to take some of their wastewater effluent and reuse it for purposes where potable water (drinking water quality) is not needed, like watering golf courses. There are normally some differences in the treatment of water to be reused than water to be discharged, but not a great deal. Once water is discharged to a river or lake, the only real, further treatment that occurs to it is dilution. Depending on the water to which it is discharged, it can be diluted by a factor as low as three (and possibly lower in a drought) or as high as 1000. A certain amount of biodegradation and other treatment may occur after discharge, but sometimes the water source into which it is discharged, can be polluted in its own way. However, the wastewater once put into a water source, does not become magically clean. Also, the amount the wastewater is treated before being discharged is based on regulations and also money and design. Regulations require it to be cleaned to a certain level. The technology exists to clean wastewater enough to turn it back into drinking water. It is not that difficult. It just requires the plant to be designed to do that, and extra costs, both in capital costs and operating costs. Years ago, a colleague once told me of a wastewater treatment plant that was designed to do just that. The wastewater was cleaned enough to meet drinking water standards. It was designed for a municipality with constant water shortages and thus needed to recycle water. However, the municipality required the water to discharge into a lake before it was then used as drinking water. By requiring this, the water actually became dirtier and picked up contaminants while in this lake. The municipality required this purely for the ick factor. They did not think the public would drink water that came straight from a wastewater treatment plant. The municipality was worried people would have the reaction of being disgusted to drink treated wastewater. This is a somewhat normal and understandable reaction, but it is completely ignorant of the treatment process nonetheless. It should be noted that even highly educated people suffer from the ick factor. Mary Roach in her wonderful book “Packing for Mars” describe how astronauts are not completely enthusiastic about recycling urine to drink.

There is a good chance that even if you educate people about the treatment process, some people would still not be able to get over the ick factor. I, at least, can’t really blame them. It really is natural to be repulsed. I’ve seen discussions among scientists that I am afraid sometimes almost borders on contempt for the ignorance of people who are scared of certain technologies. If people were educated about certain technologies, many would accept the technologies, but many still wouldn’t. Genetically modified organisms (GMOs) are an example of this. I fully admit I have a problem with some GMOs but not all. I have a serious issue with plants that have been modified to produce Bt toxin, but my issue with this is not about the plants ability to produce the toxin, but the effect it might have on organic plants, which many times are treated with Bt toxin to kill insects. I like organic foods for a multitude of reasons that I won’t go into here, but I don’t think there has been enough research or even concern about how GM plants that produce Bt toxin might have on organic plants. I also have an issue with GM plants that have been modified to be resistant to herbicides, but again I don’t actually have an issue with the actual genetic modification. I have a problem with the fact that this allows greater use of herbicides, and the effect this can have on the ecosystem and also the effect this can have on the workers who work with the herbicide. Conversely, I don’t like certain GM animals such as GloFish, and I would put this into the category of just because we can do something, doesn’t mean we should. Perhaps it is ignorance and the ick factor. I’m not scared of them. I just think sometimes humans do things that perhaps we shouldn’t. Sometimes, it really isn’t nice to play with Mother Nature.

I have discussed my issues with GMOs to a certain extent with a person I know who works on GMOs. She is constantly fighting ignorance and fear about GM foods. We have discussed a little the issue of labeling GM foods. I support the labeling of GM foods, and she has stated it is not that simple. I don’t have all the facts, but I think part of this has to do as to where “traditional” plant hybridization and breeding end and where does genetic modification start. The problem is that when GM foods are not labeled, it gives people who don’t like GM foods more ammunition to fight GM foods because they can say the public is being lied to and information withheld. I have heard the argument that if foods that include GMOs are labeled as such, then people won’t buy them out of ignorance. I don’t think this is a valid argument. That is a consumer’s right. Some people who oppose GMOs when educated about what GMOs are and are not, will probably start to accept them, and other will never accept them. However people must be free to make their own choices even if out of ignorance and fear. [I am leaving aside the issue of ignorance and fear leading to people making decisions that not only affect themselves but others, which is a whole other issue.] Further, taking the attitude that people don’t need to know certain things because they wouldn’t understand, is arrogant, and educated people must stop themselves from becoming arrogant. Educated people need to fight harder to educate others.

Nuclear power is another example of technology of which many people are scared. A large problem with nuclear power of course, is that it is a relatively safe technology, but if something goes wrong, it can really go wrong. Nuclear accidents are thankfully relatively rare, but they have the potential to affect a huge number of people as seen with the Chernobyl and Fukushima disasters. Considering how long nuclear power has been around, I think it is unlikely that some people will ever accept nuclear power even if fully educated about it. Nuclear power may also be one of the technologies where people think we are doing something we should not be, as in it it not natural. I am not sure, but I also think nuclear power suffers from an engineering problem. From my limited knowledge of both Chernobyl and Fukushima, both had design flaws, in that possible, known “what ifs” were not properly addressed in the design and construction. I learned recently of new nuclear power designs that would not have the risks associated with current nuclear power plants, like meltdowns. I am very excited to see if these designs will discussed and used in the coming years, but I worry that bad memories of old technologies will prevent people from accepting these new technologies.

People have a very long memory when new technology goes wrong. Scientists and engineers are really good about learning from when things go wrong. However, if when things go wrong, people, the environment, property, or something else is harmed, then not only do scientists and engineers have to learn how to improve the technology, but we also have to regain people’s trust. That can be an even more difficult process. Some people fear technology that they don’t understand. Also, when the previous technology had problems, and people don’t understand what has changed between technologies, it is going to very difficult for them to accept the newer technology. Then again, some people fear technology that they do understand. Perhaps the fear is due to the ick factor or the your-playing-God factor. I am empathize with this fear. Education can help to alleviate fear but not always. Sometimes fearing, distrusting, or not accepting a technology is not just an education issue. Sometimes it is a deep-seated, human instinct. Perhaps this is both good and bad. I think those of us who work with and on technology would be best served to remember that.