Giant Shiny Ball Play Thing

Last night, I went to Cultural Programs of the National Academy of Sciences (CPNAS)‘s D.C. Art Science Evening Rendezvous (DASER). It is a monthly discussion forum on art and  science. They always have interesting speakers, and it is one of the cool things about living in the DC area. Anyway, last night upon walking into the room right before the program began, I was immediately intrigued by this enormous sphere siting in the corner of the room, which I dubbed the Giant Shiny Ball Play Thing.satelloon

I had no idea what this thing was, and there was no mention of it in the program. I envisioned the amazing game of beach ball toss that a large crowd could play with it. The Giant Shiny Ball Play Thing was seriously one of the coolest things I had ever seen, and I wanted one. Sure it was probably about 10 feet in diameter and would never fit in my house. Even if it did fit in my house, putting a shiny inflatable ball in the same house with my cat and her claws would not end well at all.

I finally found out that the Giant Shiny Ball Play Thing is a reproduction of a satelloon. Greg Allen, one of the speakers, had it fabricated as part of his Exhibition Space exhibit. A satelloon is satellite balloon, of course, and I’m going to bet that either an engineer or scientist came up with that name. NASA made satelloons for Project Echo from 1956-1964. I am not going to describe the whole history because Greg Allen has a great summary of the project and the amazing satelloons. If you want even more history, you can read about it straight from NASA. The history is fascinating.

Thus the Giant Shiny Ball Play Thing is really a symbol of some incredible science and engineering history. I still want to play with it though. Also, I took a fun self portrait of myself in the satelloon.

satelloon and meThere, dear readers, now you know what I look like.

Finally, if like me, you can’t get enough of the Giant Shiny Ball Play Thing, Heather Goss created this fun Vine video of it being deflated.

Kilograms Do NOT Measure Weight

I think like many engineers, one of the reasons that I liked the idea of going into engineering was the mistaken belief that a career in engineering meant working with numbers and not having to write. I have never been very good with words. I love numbers. Numbers make sense to me. Words confuse me at times. Also, the English language in general makes no logical sense to me, and I am a native English speaker. [Well, I’m a Southern, so you can go ahead and make an argument against the native English speaker part.] I can’t spell worth crap because of the aforementioned English language illogical thing. This is actually fairly common among engineers. Had my family known the warnings signs, it would have been obvious since I was about 5 years old that I was destined to be an engineer. I have always been good with numbers, and I can’t spell worth crap. Take note parents, as these are the warning signs your child may be an engineer. Also, an early love of duct tape.

I am fairly good with grammar though probably because there are more rules and less exceptions. Partially because of this and for other reasons, at my current job, I often edit other people’s documents not just for science and engineering accuracy but also for grammar, readability, and clarity. I have also been a peer reviewer for a few manuscripts submitted to scientific journals, and previously, I used to edit manuscripts that were about to be submitted to peer review journals. I keep coming across certain words and phrases that are scientifically and grammatically incorrect. There are many grammar style manuals that exist, but I have yet to come across a science grammar style manual. If one exists, I would love for someone to point me to it. So I’ve decided to start writing about some of the most common and inappropriate phrases in the hope that maybe it will stop at least one one person from using these incorrect phrases.

The most common and completely wrong phrase I see is stating that something or someone weighs a certain number of kilograms. Ironically, non-US citizens, i.e. people who live in a country where they use the metric system, are just as guilty of this phrase as US citizens who sort of have the excuse that they live in a country that refuses to stop using the completely archaic and impossible to use if you are a scientist or engineer, English imperial or US customary units. For the benefit of everyone who doesn’t understand why this is wrong, let me explain why it is.

A kilogram is a unit of mass. Mass is the amount of stuff that an object has.

To say something weighs something, you are saying it has a certain amount of weight. A weight is a specific type of force, and because it is a force, weight, like all other forces, is measured in Newtons (N) in the metric system. Weight is the amount of force on an object due to gravity. Therefore, weight is the mass (the amount of stuff) multiplied by the acceleration due to gravity. If you happen to be a person on Earth with a mass of 70 kg, then since the gravitational acceleration on Earth is 9.81 m/s2, you have a weight of 687 Newtons (N). Let’s say you happen to be an astronaut, and the Moon program gets revived, and you go to the moon. Your mass will not change. Your mass will still be 70 kg, but once you arrive at the Moon, your weight will be about 114 N because the Moon’s gravitational acceleration is 1.63 m/s2. While you are on your journey to the Moon in space, there will be no gravity, so you will have no weight. You will be weightless, hence the fun videos of astronauts floating, but you will still have the same 70 kg mass.

To review, a person or an object has a mass that can be measured in kg. A person or an object that is on any celestial body with gravity has a weight that can be measured in N. It is completely incorrect to say that a person or an object has a weight in kg. It is also confusing. Does it mean you have a mass in that number of kg? Does it mean you have a weight in that number of N, not kg? Please, don’t use kg and say weight. Mass and weight are not interchangeable. They do not mean the same thing.

Short Term Radon Test Results

Previously I wrote that I was testing my house for radon. I got the test results back this week, and the test results came back as an average radon level of 2.9 pCi/L. The good news is this is less than the 4 pCi/L action level. The bad news is this is still elevated above average house level of 1.3 pCi/L. This test involved collecting radon over four days. At work, I am currently working on a project that involves looking at the indoor air variability due to radon or volatile organic compounds intrusion from the soil and groundwater. Thus, I know better than most how variable indoor air concentrations can be. They can vary a lot. Therefore, before deciding what to do, I have considered the following items:

  • The test was done in winter under proper closed house conditions. Closed house conditions means keeping the doors and windows closed except for normal entering and exiting the house through the doors. This is not an issue in the winter because it is cold. This is also one of the reasons winter is one of the best time to perform the test, but it also means that the test will lead to higher results than if more open house conditions are maintained. When the weather is nice, I like to open the windows and doors, so that would generally mean at least during those times, the radon concentrations in my house should be much lower.
  • The test was performed over four days. As I stated, indoor air concentrations can vary a lot, and in terms of those fluctuations, four days is relatively short term. Even ignoring the seasonal effect of closed versus open house conditions, the long term average radon conditions could be much higher or lower than 2.9 pCi/L. The reasons are not fully understood, but exterior temperatures and precipitation can affect it. A long term test over several months or even better a year, will give a much better understanding of the average concentration. If the results had been 1.3 pCi/L or less, than given the conditions, I would probably not be at all worried that the long term concentrations would be higher.
  • The EPA recommends that the test be performed in lowest habitable portion of the house. As such, I placed the test in the guest room for that and other reasons stated previously. However, I am almost never in the guest room. I don’t have guests that often, and the door to that room remains shut most of the time. Thus the only air exchange in the room is via the ventilation ducts and a little underneath the door. Furthermore, my bedroom and all the common areas of the house (kitchen, living room, etc.) where I spend most of my time are upstairs and should have lower radon concentrations than the guest room. Therefore, even if the results from the guest room do accurately represent average radon concentrations, they are borderline for taking mitigation action and probably represent the highest levels in the house. While I don’t want to expose my guests to undue risks, especially since my guests are generally people I like or love, do I want to mitigate based on the results from this room?
  • Finally, I’m a scientist, and I believe in validation and replication. This was one test result, and home test kits are generally not considered the gold-standard of any type of test. There is no doubt at least of some amount of inaccuracy with it.

Therefore, I have decided to test the house again, but this time for a longer duration. I have also decided to run two tests simultaneously. I plan to place two testers in the house, one in the guest room again and one upstairs in my master bedroom. I have ordered a long term home test kit that can be used to test between 90 and 365 days. I plan to run the test over an entire year to get a much better indication of what the long term average radon concentrations are in the house. Also, by testing both the guest room and master bedroom, I can better understand what my average exposure is both in terms of the average annual concentration and in the rooms where I spend the vast majority of my time. I will also add that while the guest room is a guest room now, as it is bedroom, legally and real estate-wise speaking, and thus in the future it could be a normal bedroom if my life changes or if I sell the house. Therefore I still consider it important to know what the long term radon concentrations are.

Check back in a year, and I will let you know what happened and how I am proceeding.

Testing My House for Radon

I’m testing my house for radon, and you should also. Winter is the best time to test your house for radon, which is one of the reasons I am testing it now. What is radon, and why am I testing for it? Keep reading.

What is radon? It is an odorless, tasteless, invisible gas that also happens to be radioactive. It is produced naturally from the decay of uranium, which occurs naturally in soil across the United States, and other countries and continents. The United States Geological Survey (USGS) has this neat map showing uranium soil concentrations across the US. Due to its radioactivity, radon is a carcinogen. In fact, it is the second leading cause of lung cancer after smoking. Radon gas is pretty much everywhere, both outdoors and indoors. Like all carcinogens, there is no safe level of exposure. You can’t completely avoid exposure because it is naturally occurring, but it is best to avoid it if you know it is present.

The US EPA estimates that the average home has an indoor radon concentration of 1.3 pCi/L, this means pico Curies, a unit of radioactivity, per liter of air. If your indoor air is above 4 pCi/L, then they recommend you fix your home. I’ll get to what fixing your home means next. Finally if the indoor air concentration is between 2-4 pCi/L, then they recommend you consider fixing the house. It is in that range that the concentration starts to get high enough above background that you might want to take action.

What happens if the radon concentrations in your house are high? First, don’t panic, your house can be mitigated to reduce the radon concentrations. You can hire a professional to install a mitigation system in your house. A mitigation system can either prevent radon gas from entering the house, or it can remove it from the house once it gets in. For example, one type of system sucks or pulls gas from beneath the house and then pipes it safely above the house where it can disperse into the atmosphere. Mitigation systems can be very effective and will greatly reduce your risk of lung cancer due to radon exposure.

Is your house at risk? As shown in the USGS map, some areas have higher concentrations of uranium in the soil than others. Areas with higher soil uranium concentrations will generally lead to higher radon gas concentrations. Also, houses with a crawl space will generally have less radon infiltrating the house than houses built on a slab or with a basement. The crawl space can allow the radon to dissipate before rising into the house. Houses with cracks in their slab are more susceptible because the cracks serve as a pathway for the radon to rise into the house. Also, pipes and conduits such as for wires from the house to ground can also allow radon to enter if they are not properly sealed.

So how do you find out if elevated levels of radon exist in your house? It’s fairly easy. Many states regulate the testing of radon, so you may try contacting your state radon department if it has one. Most of the time, you can go to your local home improvement store and buy a test kit for about $20. That’s what I did. The test kit I bought included two little containers that detect radon. The test kit had certain specific directions for the test containers such as they needed to be at least three feet off the floor, at least three feet from an exterior wall, etc., and they needed to be open for four days. The test containers were supposed to be placed six inches from each other. I presume you get two that are supposed to be placed in the same location for replicability. So here are the high tech test kits.

Both radon detectors placed for testing

Both radon detectors placed for testing

Yes that is a tape measure in the photo because it said to place them six inches apart, and I’m an engineer. Now be quiet. The detectors should be placed in one of the lowest habitable rooms of the house. My house is built into a hill such that the front door on the first floor is ground level, and the back door of the second floor is also ground level. I chose to place the detectors in the guest room, which is on the first floor and in the back exterior corner of the house. The back wall and 3/4 of the side wall of the guest room are underground exterior walls, and thus this room would be one of the most susceptible to radon infiltration from the ground. The room that serves as my office and workout room is next to the guest in the front exterior corner of the house. Two of its walls are also exterior, but only about 1/3 of its side wall is actually underground. However, there is a crack in the slab about two feet long in the office, so I considered whether the test kits should be placed in this room. [Due to the extensive renovation I’ve been doing on this house, I know where all the cracks and openings are.] That crack could serve as a major route for radon to enter the house. However, I ultimately decided that the guest room would be more susceptible to radon infiltration because of the amount it is underground.

After choosing in which room to place the detectors, I then found a good location that was far enough away from an exterior wall and above the floor. I then proceeded with the testing protocol. I unscrewed the containers and let them sit for four days. Whew, that was exhausting. I deserved a drink after initiating that test. Here is one of the detectors unscrewed. It’s quite simple looking.

Radon detector open to run test

After I let them sit for four days, I screwed the caps back on, filled out the form that came with them, and mailed them into the lab. It cost $30 to have them tested, so with the cost of the kit, the entire thing cost me $50. I consider $50 a small price to pay to make sure I am not unknowingly breathing in a carcinogen everyday. I’m currently waiting for the results from the lab, and I will update my blog when I get the results.

One final note, I said at the beginning of this post that winter is the best time to test for radon. The reason for this is winter tends to be the time that the radon concentrations in a house would be at the highest. When the weather is nice, people tend to open windows  for ventilation instead of using the AC or heater, and people just tend to open doors more often to go outside for whatever reason. Thus in the winter, the house is more closed off, and radon concentrations can build up due to less exchange of the indoor air with the outdoor air. Where I used to live in south-eastern part of US, I probably had windows open more often in winter, as I constantly used the AC in the summer, so this might not hold true. That and the fact that indoor air concentrations can vary day to day, is why experts recommend that if you get high levels detected with a short term test, you consider doing a longer term test such as over several months, to determine what the longer term average is. The test kits do have false positives, especially at lower concentrations, so if you test your house, and it comes back high, once again, don’t panic. Test your house again, this time with a longer term test, and see what the longer term concentration is, and then determine if you need to take action. However, don’t remain ignorant about the risks. Test your house; it’s important and could save your life.

For more information:

Biomarkers: What are they and why do we study them?

In my previous post, I stated that as part of the research of which I was involved, we took blood and urine samples from our subjects, i.e. the guys we were studying. These men are exposed to chemicals during the normal course of their workday. [I say men because the all the people in our study were men. We would have happily used women in our study, but the industry we were studying is dominated by male workers, and we did not find any females to participate or who even worked at that type of job.] While the men were exposed to numerous chemicals, we were interested in one specific chemical that is known to cause detrimental health effects. While the subject was working with this chemical, we had a personal air sampling device clipped to his clothing in the shoulder area. This gave us estimate of the amount of chemical that was in his breathing air space. It was important for us to measure the breathing air space to determine exposure because the worker was spraying this chemical, so the chemical concentration would not be uniform in the air around him. As an example, if you are standing in your house, you can presume the air around you is evenly mixed. However, if while standing there, you spray air freshener or something like that, then as you spray and right after you spray, there will be a very high concentration of the air freshener in front of the direction you sprayed it. There will be a lower, but still high concentration right behind the sprayer, presumably this would be where you are, as the spray mixes. The high concentration will quickly spread out, and the freshener will mix in the rest of the room. If the house’s ventilation system is operating at the time, the freshener will mix faster than if the ventilation is currently off. Thus, the air sample that was taken in the breathing air space gave us an estimate of what the worker would have breathed in had he not been wearing a respirator. All the workers wore respirators though. Some wore half-face filter type respirators (similar to what you buy at a hardware store), which generally reduce the chemical concentration in the air breathed in by a factor about ten or so, if they are worn properly. Some workers wore supplied-air respirators, like a firefighter only these were attached to a hose with an outside air supply. This type of respirators generally reduces the chemical concentration in air breathed in by a factor of 1000. Therefore, we got an estimate of what the worker was exposed to in the air but not of the amount that made it into the lungs.

After the subject worked with the chemical, we applied and quickly removed tape strips (medical tape) to his arms, wrists, hands, and neck to determine the amount of the chemical that made it onto his skin in those areas. The medical tape removed the very top layer of epidermis and any chemical that was in that layer. Basically it was like we applied and then removed a band-aid without the gauze section. Thus, the tape strip gave us an estimate of how much chemical made it on to his skin, but it couldn’t tell us how much of the chemical actually made it through the layers of the skin and into the blood stream. Previous research had indicated that it was possible for this chemical to be absorbed through the skin. Despite what some people might think, skin is not impervious to chemicals. If it was, the nicotine patch and the estrogen patch wouldn’t work.

To summarize, we could estimate what the worker was exposed to via inhalation and dermal exposure, but we didn’t know what he actually absorbed or what made it into his body. That is where biomarkers can be useful. Biomarkers are measurements of a chemical or some other tell-tale sign of exposure in some biological sample. They can be measured in the blood, urine, fecal matter, exhaled breath, and many other bodily fluids or materials. Some materials are used more frequently because they are a lot easier to get. It is much easier to get someone to agree to urinate in a cup then to let you do a spinal tap for spinal fluid. Which bodily material is used also depends on what the chemical of interest is. If you are looking for a volatile chemical, the exhaled breath might be used. To get the exhaled breath, the person simply exhales into a specially designed glass tube. Similarly, a suspected drunk driver who has just been pulled over by the police, may be asked to breath into a breathalyzer. The concentration of the alcohol, or chemical, in that air can then be measured. This is a biomarker. If the chemical or its metabolite is excreted quickly, then it would be more useful to study the urine than the blood because there would probably be higher concentrations in the urine than the blood. However, the concentration in the urine is generally more representative of short term exposure, while the blood is more representative of long-term exposure.

The metabolism of the chemical is very important because it indicates what chemical you are actually looking for in the body and also where to look for it. For example, when a person is exposed to lead, it does not change into another chemical because lead is an element. Thus, blood lead level is a biomarker used to indicate exposure to lead. A person’s intoxication level can be measured by exhaled breath as stated. A suspected intoxicated person can also have a blood sample withdrawn, and the amount of alcohol in the blood can be measured. It is called the blood alcohol content, and it a biomarker of alcohol exposure. The body metabolizes alcohol and uses it for fuel, so looking for it in the urine is not all that useful, or least not for the police. Alcohol in the urine is more indicative of consumption hours beforehand (i.e. it doesn’t tell the police how drunk the person is at that moment, crucial for legal reasons), and it is not completely accurate because the rate and amount that a person metabolizes alcohol differs from another person. Like alcohol, many other chemicals that people are exposed to, are metabolized or partially metabolized by the body. Unlike alcohol, if it is a chemical that the body does not need and can’t use for nutrition, then the body will generally try to get rid of it as quickly as possible, if it can. The chemical we were studying in our research was like this. The body has no use for it, so it is partially metabolized and excreted. Thus we looked for the metabolite, not the chemical itself, in the urine or blood. To what degree a chemical or metabolite can be found in the urine versus the blood versus some other bodily fluid or tissue depends on the physical and chemical properties of the chemical or its metabolite. The metabolism, storage, and excretion pathway in the body of different chemicals is the subject of fascinating research and possibly another blog post.

Shipping Human Specimens

This morning I read an article in the Chicago Sun-Times concerning 17 human heads that had been discovered at Chicago O’Hare Airport. The best part of the headline is that it said “no foul play suspected.” This article has now been updated to state that “‘They were properly preserved and tagged as human specimens,’ said Tony Brucci, chief investigator for the medical examiner’s office” and that according to U.S. Department of Homeland Security, “the specimens appear to be legitimate medical samples.” The original version of the article, which I can no longer find, did not have all these details. It just said 17 human heads had been discovered, transported to the medical examiner’s office, and no foul play was suspected. This of course, sent most people’s imaginations wild as to how 17 human heads could end up at an airport without foul play. Perhaps this is a new way to save on air fair, just send a head, not the whole body.

The shipment of human heads, legitimately or otherwise, made me think of my human specimen shipping adventures while in graduate school. The field work that my fellow graduate students and I performed included three one-month trips to Seattle. Everyday we would drive to a different location to sample at the type of workplace we were studying. Among the samples we collected were blood and urine. For the vast majority of blood analysis, including the ones we were doing, the blood has to be separated into the red blood cell fraction and plasma section before it can be frozen. We were actually isolating the white blood cells also. To separate blood into these fractions, the blood has to be separated within 24 hours of being drawn, in truth, the sooner the better. Therefore, every night after sampling, we would ship the samples overnight to the east coast where our university was located. This may surprise some people, but this is actually not that big of a deal. Another grad student and I became certified hazardous materials shippers to do everything properly. In the case of our biological samples, the blood and urine, they could be shipped as “exempt human specimens.” This is specific term for shipping that meant our samples were not infectious and only required certain precautions to ship. Unless a person has a urinary tract infection, urine is sterile. Blood of course can carry many infectious agents, but if a person can be reasonably believed to be healthy and free of a blood-borne infection, then the blood can also be assumed to be non-infectious, and the blood can be shipped as an exempt human specimen.

Therefore every night after sampling, we would put the blood and urine samples with ice packs in a styrofoam container that was within a cardboard box. The cardboard box was clearly labeled “EXEMPT HUMAN SPECIMENS” as per shipping rules. We would then ship via FedEx, or if we couldn’t make it to the FedEx drop off before the overnight cut off for east of the Rockies (FedEx had an hour later drop off for west of the Rockies, presumably those went to a different sorting center), then we would drive to SeaTac airport and ship via cargo on a passenger aircraft. Shipping cargo on a passenger aircraft was an adventure. This was post 9/11, and they had started to implement more security measures for cargo. I don’t fully know what the security measures were then or today, but let’s just say, I don’t have a lot of faith in the security of cargo. In any event, the first time I dropped a box off at the passenger airline, which I won’t be naming, after going through a whole lot of paperwork, the employee took the package which had already been sealed. He asked if he could open it to examine the contents for security reasons. As he had no gloves on, I said, of course you can examine it, but to avoid contamination of my samples and for your own safety, please put on latex or nitrile gloves. He stopped and stared at me and asked why. Another employee who was working on the paperwork stopped what he was doing, looked at the first employee, and then the second employee and I at about the same time, said because the package contains human specimens, as it states on the outside, and as all the paperwork states. The first employee then said “oh” and looked a little embarrassed and took the package to the back, hopefully to be x-rayed or something. I say hopefully because as someone who flies, I am hopeful but not confident all cargo gets x-rayed. The fact that the employee was going to open a package without reading or noticing the large letters on the outside that said “EXEMPT HUMAN SPECIMENS” made me rather wonder how much they check things they accept and how much their employees might endanger themselves by not paying attention. Things were much easier when we could make it to FedEx, and they ship thousands (millions?) of these types of packages everyday. [This is not a plug or advertisement for them.]

The packages’ return trip was also made me wonder how much people question or don’t question things. After our fellow grad students back at the lab had received a week’s worth of packages or so, they would put the thawed ice packs back in the styrofoam, close everything up, and ship them back to us via FedEx ground, so we could reuse the boxes. The first time they shipped boxes back, they didn’t bother to remove the taped labels that said “EXEMPT HUMAN SPECIMENS”. I thought I had told them to do this, or perhaps I just assumed they would. I don’t know if there is anything legally or technically wrong with shipping boxes labeled as exempt human specimens that don’t actually contain human specimens or anything else for that matter. However, as we were shipping them back via ground to save money, and it took five days to get from our university to Seattle, I would think it would be better to remove the labels so that no one at FedEx questioned why or what kind of specimens would not go bad over the course of five days. Because the label said “exempt”, it should not change the shipment method, but packages shouldn’t be labeled as something more dangerous than they are. There are some types of dangerous goods that can’t be shipped via ground because it takes too long or it would affect the route (think of all those freeways and roads that say “no hazardous cargo”). Conversely there are some dangerous goods that can’t go in an airplane. However, I guess I worry too much because the packages arrived at our hotel without any problems or questions from FedEx. I guess FedEx was not concerned with five day ground shipment of exempt human specimens, whatever they might be.

I’m not entirely sure what the hotel employees thought of us, but they must have wondered. We were there for an entire month, and the people at reception certainly knew me if only because we were rather unusual guests. We had a small freezer in our room to store our non-biological samples before shipping them back to the lab. We had stacks of empty boxes labeled “EXEMPT HUMAN SPECIMENS” and other boxes labeled for the chemicals we shipped. My room had boxes of urine and blood sample collection supplies. Another room had a bunch of charging personal air sample pumps and their calibration machine. No, we were not normal hotel guests. They knew me at reception because I was always picking up packages, including our returned “exempt human specimens” boxes. First time I came to pick up the returned packages, they had them stacked up in the front office. One employee timidly asked if I would mind telling him what was in the boxes. The boxes were about 18 inches wide by 12 inches deep by 18 inches or so. I explained that they were currently empty and what we were using them for. He started laughing and seemed relieved but almost disappointed. Evidently they had spent the day guessing what was in them. The winner had been human heads. I wasn’t sure how to respond to that. However they didn’t call the police or kick us out of the hotel, so I guess they thought we and our credit cards were trustworthy enough that what we were shipping was legitimate and safe. Still, it makes me wonder how much people pay attention to things and question what they see.

A heart tugging, scientific exhibit

At the Smithsonian’s National Museum of Natural History is, in my opinion, one of the most moving scientific exhibits I have ever seen. Yes, I am a softie, especially when it comes to animals, but this exhibit almost brought me to tears. It is an exhibit of two skeletons, a man and an extremely large dog, but not just any man and dog. The human skeleton is Dr. Grover Krantz, a professor of physical anthropology at Washington State University, and the dog is his Irish wolfhound Clyde. While the skeletons have scientific value, the fact that Dr. Krantz wanted his remains used for his scientific field after death is a wonderful testament to his love of his chosen scientific field. The fact that Dr. Krantz wanted to be immortalized with his beloved dog is what almost brought me to tears. Rest in peace, Dr. Krantz and Clyde. I’m sure you are both happily together in heaven.

Dr. Krantz and Clyde

The sign accompanying the exhibit is below, and I have quoted the text below it.

Dr. Krantz exhibit sign

Dr. Grover Krantz, a professor of physical anthropology at Washington State University, generously left his remains and those of his beloved 160-lb (72.6-kg) Irish wolfhound Clyde to the Smithsonian’s National Museum of Natural History.

At his death in 2002, according to his wishes, Dr. Krantz’s remains were taken to the University of Tennessee’s Anthropology Research Facility, where scientists are conducting many kinds of skeletal research, including studies of soft-tissue decay rates — information that is essential in forensic cases for accurately estimating time since death. In 2003, Grover and Clyde were brought to the museum, so that their skeletons could be used in teaching. Posed here as in life, their skeletons help our scientists teach human and nonhuman skeletal anatomy in relation to biomechanical function.

This exhibit honors Dr.Krantz’s expressed wish to be on display, and his dedication to education and his chosen scientific field.

Empathy for Technophobes

I was in a discussion recently about bovine spongiform encephalopathy (BSE) otherwise known as mad cow disease. The important background of it and why I am mentioning it, is that dairy cows need protein supplements because of how much milk they produce. In North America, the protein supplements were mainly in the form of soy, but in the United Kingdom, the supplements came mainly from rendered animal parts. These animal parts included other cows. I can remember when BSE first became a huge news item, and the practice of feeding cattle rendered animal parts came to light, I was disgusted like I imagine many people were. Part of my disgust was my questioning why would you take a herbivore, and not only turn it into a carnivore, but also a cannibal? Leaving aside the point that BSE showed that this practice had serious risks, there is a more basic question I have to ask myself, which is protein is protein, so does it matter where it came from? In this case, of course, the answer is yes. On a molecular level, amino acids like lysine and tryptophan, are the same no matter where they come from. However, the proteins and other compounds in soy differ quite a bit from the proteins and other compounds in rendered animal parts. Also, in the case of BSE, it is the shape of the proteins in animal parts that was really important. Thus in this case, it really does matter where the protein is coming from.

The turning a cow into a cannibal is still a bit of a different issue. The idea in general just seems wrong and repulsive to me. It is not natural. I think that reaction I have is somewhat common, and it has implications for how people react to certain technology. Humans are naturally repulsed and scared of certain things, and this has for the most part served us well through history. Humans in general, are repulsed by human excrement. We all urinate and defecate, but once we do, we all want the urine and feces to go away, never to be seen again. This is not a bad reaction in that, feces can have multitudes of infectious agents in it, so having it go away is a good thing. I am speaking personally to a only certain extent though. I have worked in wastewater treatment design, I have sampled at a wastewater treatment plant, and I spent several years collecting and analyzing other people’s urine for my dissertation research. I am kind of fascinated by human excrement and the information it can provide about the health of an individual. That being said, I would never touch it with my bare hands.

Humans’ natural repulsion to their own excrement causes an interesting reaction to its treatment. In urban and suburban areas, wastewater is collected, treated, and then normally discharged to some body of water such as a river, lake, or the sea. What many people don’t seem to realize, is that if the wastewater is discharged to a river or lake, then there is a very good chance, it will flow some distance and then be collected and pumped to a water treatment plant where it will then be treated and become the water supply for some other municipality. Due to the scarcity of water in many areas, some municipalities are starting to take some of their wastewater effluent and reuse it for purposes where potable water (drinking water quality) is not needed, like watering golf courses. There are normally some differences in the treatment of water to be reused than water to be discharged, but not a great deal. Once water is discharged to a river or lake, the only real, further treatment that occurs to it is dilution. Depending on the water to which it is discharged, it can be diluted by a factor as low as three (and possibly lower in a drought) or as high as 1000. A certain amount of biodegradation and other treatment may occur after discharge, but sometimes the water source into which it is discharged, can be polluted in its own way. However, the wastewater once put into a water source, does not become magically clean. Also, the amount the wastewater is treated before being discharged is based on regulations and also money and design. Regulations require it to be cleaned to a certain level. The technology exists to clean wastewater enough to turn it back into drinking water. It is not that difficult. It just requires the plant to be designed to do that, and extra costs, both in capital costs and operating costs. Years ago, a colleague once told me of a wastewater treatment plant that was designed to do just that. The wastewater was cleaned enough to meet drinking water standards. It was designed for a municipality with constant water shortages and thus needed to recycle water. However, the municipality required the water to discharge into a lake before it was then used as drinking water. By requiring this, the water actually became dirtier and picked up contaminants while in this lake. The municipality required this purely for the ick factor. They did not think the public would drink water that came straight from a wastewater treatment plant. The municipality was worried people would have the reaction of being disgusted to drink treated wastewater. This is a somewhat normal and understandable reaction, but it is completely ignorant of the treatment process nonetheless. It should be noted that even highly educated people suffer from the ick factor. Mary Roach in her wonderful book “Packing for Mars” describe how astronauts are not completely enthusiastic about recycling urine to drink.

There is a good chance that even if you educate people about the treatment process, some people would still not be able to get over the ick factor. I, at least, can’t really blame them. It really is natural to be repulsed. I’ve seen discussions among scientists that I am afraid sometimes almost borders on contempt for the ignorance of people who are scared of certain technologies. If people were educated about certain technologies, many would accept the technologies, but many still wouldn’t. Genetically modified organisms (GMOs) are an example of this. I fully admit I have a problem with some GMOs but not all. I have a serious issue with plants that have been modified to produce Bt toxin, but my issue with this is not about the plants ability to produce the toxin, but the effect it might have on organic plants, which many times are treated with Bt toxin to kill insects. I like organic foods for a multitude of reasons that I won’t go into here, but I don’t think there has been enough research or even concern about how GM plants that produce Bt toxin might have on organic plants. I also have an issue with GM plants that have been modified to be resistant to herbicides, but again I don’t actually have an issue with the actual genetic modification. I have a problem with the fact that this allows greater use of herbicides, and the effect this can have on the ecosystem and also the effect this can have on the workers who work with the herbicide. Conversely, I don’t like certain GM animals such as GloFish, and I would put this into the category of just because we can do something, doesn’t mean we should. Perhaps it is ignorance and the ick factor. I’m not scared of them. I just think sometimes humans do things that perhaps we shouldn’t. Sometimes, it really isn’t nice to play with Mother Nature.

I have discussed my issues with GMOs to a certain extent with a person I know who works on GMOs. She is constantly fighting ignorance and fear about GM foods. We have discussed a little the issue of labeling GM foods. I support the labeling of GM foods, and she has stated it is not that simple. I don’t have all the facts, but I think part of this has to do as to where “traditional” plant hybridization and breeding end and where does genetic modification start. The problem is that when GM foods are not labeled, it gives people who don’t like GM foods more ammunition to fight GM foods because they can say the public is being lied to and information withheld. I have heard the argument that if foods that include GMOs are labeled as such, then people won’t buy them out of ignorance. I don’t think this is a valid argument. That is a consumer’s right. Some people who oppose GMOs when educated about what GMOs are and are not, will probably start to accept them, and other will never accept them. However people must be free to make their own choices even if out of ignorance and fear. [I am leaving aside the issue of ignorance and fear leading to people making decisions that not only affect themselves but others, which is a whole other issue.] Further, taking the attitude that people don’t need to know certain things because they wouldn’t understand, is arrogant, and educated people must stop themselves from becoming arrogant. Educated people need to fight harder to educate others.

Nuclear power is another example of technology of which many people are scared. A large problem with nuclear power of course, is that it is a relatively safe technology, but if something goes wrong, it can really go wrong. Nuclear accidents are thankfully relatively rare, but they have the potential to affect a huge number of people as seen with the Chernobyl and Fukushima disasters. Considering how long nuclear power has been around, I think it is unlikely that some people will ever accept nuclear power even if fully educated about it. Nuclear power may also be one of the technologies where people think we are doing something we should not be, as in it it not natural. I am not sure, but I also think nuclear power suffers from an engineering problem. From my limited knowledge of both Chernobyl and Fukushima, both had design flaws, in that possible, known “what ifs” were not properly addressed in the design and construction. I learned recently of new nuclear power designs that would not have the risks associated with current nuclear power plants, like meltdowns. I am very excited to see if these designs will discussed and used in the coming years, but I worry that bad memories of old technologies will prevent people from accepting these new technologies.

People have a very long memory when new technology goes wrong. Scientists and engineers are really good about learning from when things go wrong. However, if when things go wrong, people, the environment, property, or something else is harmed, then not only do scientists and engineers have to learn how to improve the technology, but we also have to regain people’s trust. That can be an even more difficult process. Some people fear technology that they don’t understand. Also, when the previous technology had problems, and people don’t understand what has changed between technologies, it is going to very difficult for them to accept the newer technology. Then again, some people fear technology that they do understand. Perhaps the fear is due to the ick factor or the your-playing-God factor. I am empathize with this fear. Education can help to alleviate fear but not always. Sometimes fearing, distrusting, or not accepting a technology is not just an education issue. Sometimes it is a deep-seated, human instinct. Perhaps this is both good and bad. I think those of us who work with and on technology would be best served to remember that.